Solving Recursive Domain Equations in Models of Intuitionistic Set Theory
نویسنده
چکیده
Synopsis We give a general axiomatic construction of solutions to recursive domain equations, applicable both to classical models of domain theory and to realizability models. The approach is based on embedding categories of predomains in models of intuitionistic set theory. We show that the existence of solutions to recursive domain equations depends on the strength of the set theory. Such solutions do not exist in general when predomains are embedded in an elementary topos. They do exist when predomains are embedded in a model of Intuitionistic Zermelo-Fraenkel set theory, in which case we give a fibrational account of algebraic compactness.
منابع مشابه
Computational Adequacy for Recursive Types in Models of Intuitionistic Set Theory
This paper provides a unifying axiomatic account of the interpretation of recursive types that incorporates both domain-theoretic and realizability models as concrete instances. Our approach is to view such models as full subcategories of categorical models of intuitionistic set theory. It is shown that the existence of solutions to recursive domain equations depends upon the strength of the se...
متن کاملParametric Domain-theoretic Models of Polymorphic Intuitionistic / Linear Lambda Calculus
We present a formalization of a version of Abadi and Plotkin’s logic for parametricity for a polymorphic dual intuitionistic / linear type theory with fixed points, and show, following Plotkin’s suggestions, that it can be used to define a wide collection of types, including solutions to recursive domain equations. We further define a notion of parametric LAPL-structure and prove that it provid...
متن کاملA BI-OBJECTIVE PROGRAMMING APPROACH TO SOLVE MATRIX GAMES WITH PAYOFFS OF ATANASSOV’S TRIANGULAR INTUITIONISTIC FUZZY NUMBERS
The intuitionistic fuzzy set has been applied to game theory very rarely since it was introduced by Atanassov in 1983. The aim of this paper is to develop an effective methodology for solving matrix games with payoffs of Atanassov’s triangular intuitionistic fuzzy numbers (TIFNs). In this methodology, the concepts and ranking order relations of Atanassov’s TIFNs are defined. A pair of bi-object...
متن کاملAn interval-valued programming approach to matrix games with payoffs of triangular intuitionistic fuzzy numbers
The purpose of this paper is to develop a methodology for solving a new type of matrix games in which payoffs are expressed with triangular intuitionistic fuzzy numbers (TIFNs). In this methodology, the concept of solutions for matrix games with payoffs of TIFNs is introduced. A pair of auxiliary intuitionistic fuzzy programming models for players are established to determine optimal strategies...
متن کاملThe category-theoretic solution of recursive metric-space equations
It is well known that one can use an adaptation of the inverse-limit construction to solve recursive equations in the category of complete ultrametric spaces. We show that this construction generalizes to a large class of categories with metric-space structure on each set of morphisms: the exact nature of the objects is less important. In particular, the construction immediately applies to cate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001